Vascular disease models


One of the biggest health challenges in western society is diabetes, a chronic disease that is associated with serious vascular complications, especially in the kidneys and eyes. Renal failure is the leading cause of death in diabetics and diabetes is the major cause of non-age associated blindness. As there is little known about the underlying mechanisms of nephropathy and retinopathy, and even less about possible treatments, there is an urgent need for diabetic vasculitis models. Mimics of the (highly specialized) retinal and glomerulus vascular beds will enable us to get an insight into the causes and development of these pathologies, potentially leading to better therapies.

Realistic model

hDMT also investigates the vascular contribution to neurological and neurodegenerative diseases. Patients with blood vessel malformations in the brain are at risk of developing neurological disorders that resemble dementia, possibly caused by the breakdown of the blood-brain barrier. Understanding the mechanisms of neurovascular dysfunction and the mechanisms that regulate the blood-brain barrier, is of high priority for prevention of these diseases and for identification of potential drug targets. A realistic model of the blood-brain barrier could also provide new insights into how to deliver drugs to the brain across this protective shield; this is vital for treating diseases like brain cancer or epilepsy.  

Cancer cells

A third focus area of the vessel on chip program is tumor biology, since tumors need blood vessels to develop and spread. Combining human vessels with cancer cells can provide new information on how to promote the formation of blood vessels in and around a tumor for drug delivery and block this before the blood starts nourishing the tumor.  

The use of human iPS cells in hDMT’s vascular disease models offers unprecedented opportunities for mimicking genetic diseases in vitro, since the genome of the patient is captured in the derivative vasculature in culture. LUMC has already successfully applied this technology to a number of hereditary vascular disorders.